Preventing brain injury complications with specialised optical fibres

Fibre optics are a means of transmitting information at incredibly high speeds; however, the technology can be used for more than just providing a fast internet connection. Researchers reporting in ACS Sensors have developed an optical fibre sensing system that could help medical professionals monitor patients for complications after a traumatic brain injury.

The technology tracks six biomarkers simultaneously, continuously and automatically to provide crucial information on brain health in lab tests.

After a traumatic brain injury, such as a concussion, secondary damage can occur from swelling in the brain. Biomarkers found in blood or spinal fluid provide medical professionals with information on brain health; however, many current methods struggle to monitor multiple biomarkers at the same time.

Yuqian Zhang, Ali Yetisen and colleagues wanted to create an optical fibre system that concurrently monitors six key brain health biomarkers: temperature, pH, and concentrations of dissolved oxygen, glucose, sodium ions and calcium ions. Optical fibres, similar to the larger ones used in underground fibre optic cabling, are ideal for medical applications because of their small size and their ability to interact with light-absorbing biomarkers or tissues in measurable patterns.

The researchers outfitted six optical fibres with fluorescent tips specific to each biomarker. A special multi-wavelength laser was shone through the fibres and used to monitor the analytes. When one target analyte interacted with a fluorescent tip, the change in brightness was recorded by a computer.

Then the six fibres, along with an extra fibre to boost the calcium signal’s measurement, were incorporated into a 2.5-millimeter-thick catheter to create a cerebrospinal fluid sensing system. Machine-learning-driven algorithms detangled the fluorescence signals from one another, providing an easy readout of each biomarker.

The catheter sensing system successfully detected the six biomarkers in an experiment with animal brains designed to mimic the conditions of the human brain after a traumatic injury. Next, cerebrospinal fluid samples were collected from healthy human participants and spiked with the brain health biomarkers of interest.

The sensing system accurately determined pH, temperature and dissolved oxygen level in these samples and identified changes in the concentrations of the ions and glucose. The researchers say this work demonstrates that their optical fibre system can detect when a secondary injury might be imminent and could help monitor complications from these traumatic injuries in patients.

Visit: http://pubs.acs.org/doi/abs/10.1021/acssensors.4c02126

Latest Issues

The AfPP Roadshow - Leeds

TBA, Leeds
7th December 2024

AfPP Manchester Regional Conference

Manchester Metropolitan University Business School
1st March 2025

The Fifth Annual Operating Theatres Show 2025

Kia Oval, London
11th March 2025, 9:00am - 4:00pm

AfPP Newcastle Regional Conference

Herschel Building, Newcastle University
26th April 2025

Infection Prevention and Control 2025 Conference and Exhibition

The National Conference Centre, Birmingham
29th – 30th April 2025

Decontamination and Sterilisation 2025 Conference and Exhibition

The National Conference Centre, Birmingham
29th April 2025